
MATH 127 TEST 1 SAMPLE

NOTE: The actual exam will only have 14 questions. The different parts of each question (part A, B, etc.) are variations. Know how to do all the variations on this exam.

1A.) (4 pts) To measure two distances on the Earth, we must account for the curvature of the Earth. We measure along a circle with a center C at the center of the Earth (see below). The radius of the Earth is 4000 miles. If $\theta = 21^{\circ}$, find the distance between A and B to the nearest mile. You may write your answer in terms of π . Also find the area of the sector ABC.

Arc Length:_____

Area:_____

1B.) (4 pts) The minute hand of a clock is 6 inches long. How far does its tip travel in 20 minutes? (Hint: in 20 minutes the hand covers 120 degrees). What is the area of the sector swept swept by the minute hand? Round all answers to the nearest tenth.

Arc length:

Area:

2A.) (4 pts) A wind machine used to generate electricity has blades that are 8 feet in length. The propeller is rotating at 400 revolutions every 2 **minutes**. Find the angular speed, in radians per **second**, as well as the linear speed, in feet per **second**, of the tips of the blades. You may write your answers in terms of π .

angular speed:_____

linear speed:

2B.) (4 pts) An object is traveling around a circle with a radius
of 5 meters. The object is rotating at 1/3 radians every 20 seconds.
Find the angular speed, in radians per minute , as well as the linear
speed, in meters per minute , of the object.

angular speed:_____

linear speed:_____

3A. (4 pts) Convert 61°42′21″ to a decimal in degrees. Round to two places.

3A.____

3B. (4 pts) Convert 40.24° to $D^{\circ}M'S''$ form. Round to the nearest second.

3B.____

4A.) (4 pts) Find the EXACT value: $\sec^2\left(\frac{\pi}{3}\right) - \tan^2\left(\frac{\pi}{4}\right)$

4A.____

5A.) (5 points) Find the following EXACT values if you are given $\sec \theta = \frac{3}{2}$ and $270^{\circ} \le \theta \le 360^{\circ}$. Rationalize all roots.

 $\sin \theta$: $\csc \theta$:

 $\tan \theta$: $\cot \theta$:

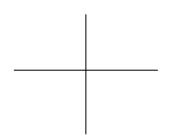
 $\cos\theta$:_____

5B.) (5 points) Find the following EXACT values if you are given $\tan \theta = \frac{8}{15}$ and $\sin \theta < 0$.

 $\sin \theta$: $\csc \theta$:

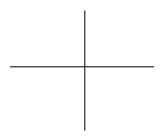
 $\cos\theta$: $\sec\theta$:

 $\cot \theta$:_____


6A.) (4 pts) In the picture below, the bearing from B to A is given as $N50$ is 70m. Find the distance across the lake, from A to C to the nearest meter the nearest meter.	
	A to C:
MAA DA DA	
C B	C to B:
6B.) (4 pts) A semi leaves its present location and travels along a bearing south and east of its original position is it? Round to the nearest whole no	
	South:
	East:
7A.) (4 pts) The Burj Khalifa is currently the tallest freestanding structure. A person is standing 619 feet from the base of the building. The angle of depression from the top of the building to the person	7A
is 77.013°. Approximate the height of the Burj Khalifa to the nearest ft. 7B.) (4 pts) Suppose you are headed toward a plateau 50 meters high.	7B.
If the angle of elevation to the top of the plateau is twenty degrees, how far are you from the base of the plateau? Round to two decimal places.	

8A.) (5 pts) Find the exact value of $\cos\left(\frac{11\pi}{6}\right)$ using reference

angles. Indicate the ref. angle and draw in standard position. To get full credit, you must show the three steps as in the notes.



8B.) (5 pts) Find the exact value of $\sin\left(\frac{5\pi}{4}\right)$ using reference angles. Indicate the ref. angle and draw in standard position. To get full credit, you must show the three steps as in the notes.

Value:

Ref. angle:

9A.) (4 pts) Find the exact value and reference angle for $\tan(-585^{\circ})$. To get full credit, you must show the three steps as in the notes.

Value:

Ref. Angle:

9B.) (4 pts) Find the exact value and reference angle for $sec(-510^{\circ})$. To get full credit, you must show the three steps as in the notes.

Ref. Angle:

10A.) (6 points) Use the following equation to answer the questions:	y = -3	$\sin\left(\frac{\pi}{8}x + \frac{\pi}{8}\right)$	$\frac{\pi}{2}$
--	--------	---	-----------------

i.) Find the period.

10i._____

ii.) Find the amplitude.

10ii._____

iii.) Find the phase shift.

10iii._____

iv.) Graph the function over one period.

- 10B.) (6 points) Use the following equation to answer the questions: $y = -\frac{1}{2}\cos\left(2x \frac{\pi}{2}\right)$
 - i.) Find the period.

10i.____

ii.) Find the amplitude.

10ii._____

iii.) Find the phase shift.

10iii._____

iv.) Graph the function over one period.

11A.) (4 pts) Find the following and graph over two full periods: $y = -\tan\left(\frac{\pi}{4}\right)$	$\frac{\pi}{4}x$
---	------------------

Period:

Phase shift:

11B.) (4 pts) Find the following and graph over two full periods: $y = \cot\left(3x + \frac{\pi}{4}\right)$

Period:_____

Phase shift:

12A.) (4 pts) Find the exact value if possible:
$$\cos^{-1}(\cos(\sqrt{8}))$$
. (Assume $\sqrt{8}$ is in radians.)

12A.____

12B.) (4 pts) Find the exact value if possible:
$$\sin^{-1} \left(\sin \left(\frac{3\pi}{4} \right) \right)$$
.

12B.____

13B.) (4 pts) Find the exact value of $\cot \left(\cos^{-1} \left(-\frac{\sqrt{3}}{3}\right)\right)$.

13B.____

14A.) (4 pts) Use a right triangle to write $\sin(\cos^{-1}(u))$ as an algebraic expression. Assume that u is positive and that the given inverse trigonometric function is defined for the expression in u.

14A.

14B.) (4 pts) Use a right triangle to write $tan(sin^{-1}(4u))$ as an algebraic expression. Assume that u is positive and that the given inverse trigonometric function is defined for the expression in u.

14B.

FORMULA SHEET

$$s = r\theta$$

$$s = r\theta$$
 $A = \frac{1}{2}r^2\theta$ $\omega = \frac{\theta}{t}$ $v = r\omega$

$$\omega = \frac{\theta}{t}$$

$$v = r\omega$$

$$\cos^{-1}(\cos x) = x \quad if \quad 0 \le x \le \pi$$

$$\cos(\cos^{-1} x) = x \quad if \quad -1 \le x \le 1$$

$$\sin^{-1}(\sin x) = x \quad if \quad -\frac{\pi}{2} \le x \le \frac{\pi}{2}$$

$$\sin(\sin^{-1} x) = x \quad if \quad -1 \le x \le 1$$

$$\tan^{-1}(\tan x) = x$$
 if $-\frac{\pi}{2} < x < \frac{\pi}{2}$

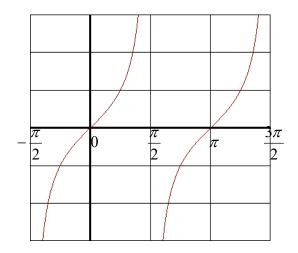
$$\tan(\tan^{-1} x) = x \quad if \quad -\infty < x < \infty$$

Complementary Angle Theorem

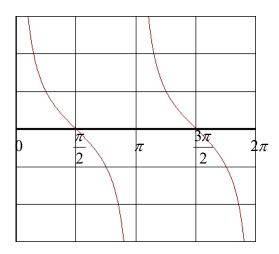
$$\sin\theta = \cos(90 - \theta)$$

$$\csc\theta = \sec(90 - \theta)$$

$$\cos \theta = \sin(90 - \theta)$$


$$\cos \theta = \sin(90 - \theta)$$
 $\sec \theta = \csc(90 - \theta)$

$$\tan \theta = \cot(90 - \theta)$$
 $\cot \theta = \tan(90 - \theta)$


$$\cot \theta = \tan(90 - \theta)$$

SOHCAHTOA

Graph of $y = \tan x$

Graph of
$$y = \cot x$$

Sine/Cosine Graph formulas

Period =
$$\frac{2\pi}{B}$$

$$Amplitude = |A|$$

Phase Shift =
$$\frac{C}{B}$$
 Q.P. = $\frac{period}{4}$

$$Q.P. = \frac{period}{4}$$

Tangent/Cotangent Graph Formulas

Period =
$$\frac{\pi}{B}$$

Phase Shift =
$$\frac{C}{B}$$

$$H.P. = \frac{period}{2}$$