4.5 Polynomial and Rational Inequalities

This section is looking a sections of graphs that are above and below the x-axis.

EXAMPLE: Use the graph of f(x) given below to solve: (a) $f(x) \ge 0$ and (b) f(x) < 0.

EXAMPLE: Use the graph of f(x) given below to solve: (a) f(x) > 0 and (b) $f(x) \le 0$.

Table Method:

x - 5			
$(x+2)^2$			
-2 5			

Number Line Method:

3x + 2			
2x-3			
-2/3 3/2			

Number Line Method:

EXAMPLE: Solve and write you answer in interval notation: $3x^3 \ge -15x^2$

$3x^2$			
x + 5			
-5 0			

EXAMPLE: Solve and write you answer in interval notation: $\frac{(x-2)(x+1)}{x-4} \le 0$

x-2				
x + 1				
x – 4				
	-1	2)	4

EXAMPLE: Solve and write you answer in interval notation: $\frac{x^2 - 4}{x - 3} > 0$

EXAMPLE: Solve and write you answer in interval notation: $\frac{x+2}{x-4} > 1$

6			
x – 4			
1			

EXAMPLE: Solve and write you answer in interval notation: $\frac{2x^2 + 3x - 4}{x + 1} \le 2$

x + 2				
2x-3				
x + 1				
	-/2	2 -1	3/2	2