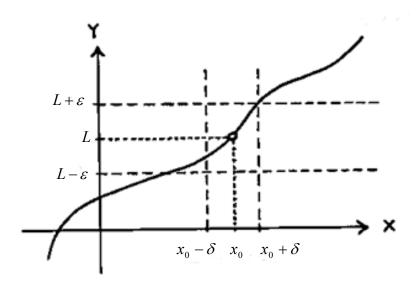
2.2 The Precise Definition of a Limit

Precise definition of a limit



Let f be defined on an open interval containing c and let L be a real number. Then:

 $\lim_{x \to x_0} f(x) = L \text{ means that for each } \varepsilon > 0 \text{ there exists a } \delta > 0 \text{ such that if } 0 < |x - x_0| < \delta \text{, then } |f(x) - L| < \varepsilon \text{.}$

EXAMPLE: Use the ε - δ definition of a limit to prove that $\lim_{x\to 3} 5x - 4 = 11$.

Proof:

For each $\varepsilon > 0$ there exists a $\delta > 0$ such that if $0 < |x-3| < \delta$, then $|5x-4-11| < \varepsilon$.

EXAMPLE: Use the ε - δ definition of a limit to prove that $\lim_{x\to 4} \frac{x}{2} + 6 = 8$.

Proof:

For each $\varepsilon > 0$ there exists a $\delta > 0$ such that if $0 < |x-4| < \delta$, then $\left| \frac{x}{2} + 6 - 8 \right| < \varepsilon$.

EXAMPLE: In the following exercises, find an open interval about x_0 on which the inequality $|f(x) - L| < \varepsilon$ holds. Then give the largest value for $\delta > 0$ such that for all x satisfying $0 < |x - x_0| < \delta$ the inequality $|f(x) - L| < \varepsilon$ holds:

a.)
$$f(x) = 2x - 2$$
, L = -6, $x_0 = -2$, $\varepsilon = 0.02$

b.)
$$f(x) = \sqrt{x-7}$$
, L = 4, $x_0 = 23$, $\varepsilon = 1$

c.)
$$f(x) = 1/x$$
, $L = -1$, $x_0 = -1$, $\varepsilon = 0.1$

d.) $f(x) = x^2$, L = 3, $x_0 = \sqrt{3}$, $\varepsilon = 0.1$ (Round answers to four decimal places)