3.3 Differentiation Rules

The derivative has several different types of notation:

Notation	Meaning
f'(x)	Derivative of $f(x)$
dy	Derivative of y with respect to x.
\overline{dx}	
<i>y</i> ′	Derivative of y
$\frac{d}{dx}[f(x)]$	Derivative of f with respect to x.

Constant Rule

 $\frac{d}{dx}[c] = 0$ This means the derivative of any number is zero. For example, suppose we had y = 9 and the question asked us to find y'. Then our answer would automatically be zero because y = 9 is a horizontal line. The slope of a horizontal line is always 0.

EXAMPLE: Find f'(x) if $f(x) = 4 \cdot \pi \cdot e^2$.

Can you see a pattern of the derivative with the following table?

Original function	Derivative
$y = x^2$	y' = 2x
$y = x^3$	$y' = 3x^2$
$y = x^5$	$y' = 5x^4$

Power Rule

If *n* is any real number, then $\frac{d}{dx}x^n = nx^{n-1}$ for all *x* where powers of x^n and x^{n-1} are defined.

Other Derivative Rules

$$\frac{d}{dx}[f(x) + g(x)] = f'(x) + g'(x)$$
$$\frac{d}{dx}[f(x) - g(x)] = f'(x) - g'(x)$$
$$\frac{d}{dx}[c \cdot f(x)] = c \cdot f'(x)$$

EXAMPLE: If $y = x^{12}$, find y'.

EXAMPLE: If
$$y = 3x^4$$
, find y' .

EXAMPLE: If
$$g(x) = \frac{3}{2}x^6 - x + 3$$
, find $g'(x)$.

EXAMPLE: If $y = 3x(6x - 5x^2)$, find y'.

EXAMPLE: If $f(x) = \sqrt[4]{x}$, find f'(x).

EXAMPLE: If $f(x) = \frac{2}{x^3}$, find f'(x).

EXAMPLE: If
$$f(x) = x + \frac{1}{x}$$
, find $f'(x)$.

EXAMPLE: If
$$f(x) = \frac{2x^2 - 3x + 1}{x}$$
, find $f'(x)$.

EXAMPLE: If
$$y = \sqrt{x} - \frac{5}{\sqrt{x}} + \sqrt{2}$$
, find y'.

EXAMPLE: Determine the point(s) at which $y = x^2 + 1$ has a horizontal tangent line.

EXAMPLE: Determine the point(s) at which $y = x^3 - 27x$ has a horizontal tangent line.

Product Rule

$$\frac{d}{dx}[f \cdot g] = f \cdot g' + g \cdot f'$$

Quotient Rule

$$\frac{d}{dx}\left[\frac{f}{g}\right] = \frac{g \cdot f' - f \cdot g'}{g^2}$$

EXAMPLE: Use the product rule to find H'(x) if $H(x) = (6x+5)(x^3-2)$.

EXAMPLE: Use the product rule to find M'(x) if $M(x) = \sqrt{x(4-x^2)}$. Write answer as a single fraction.

EXAMPLE: Use the quotient rule to find H'(x) if $H(x) = \frac{x}{\sqrt{x}-1}$.

Derivation of the derivative of e^x

EXAMPLE: Given: $y = e^{-x}$ find y'.

EXAMPLE: Given:
$$y = \frac{e^x - e^{-x}}{2}$$
 find y'.

EXAMPLE: Given: $y = x^2 e^x$ find y'.

EXAMPLE: Given: $y = (9x^2 - 6x + 2)e^x$ find y'.

EXAMPLE: Given: $y = \sqrt[11]{x^3} - e^3 + x^e$ find y'.

EXAMPLE: Given:
$$y = \frac{4e^x}{2x^5 - 3e^x}$$
 find y'.

Higher Order Derivatives

f(x)	This is our original function
f'(x)	First derivative of f
f''(x)	Second derivative of f (derivative of $f'(x)$)
f'''(x)	Third derivative of f (derivative of $f''(x)$)
$f^{(n)}(x)$	The nth derivative of f (derivative of $f^{(n-1)}(x)$)

A function has derivatives of all orders once the derivative reaches zero.

EXAMPLE: Let $f(x) = 4x^3 + 5x^2 + 3x + 1$. Find the derivatives of all orders.

EXAMPLE: Let
$$f(x) = \frac{x^3 + 2x^2 - 1}{x}$$
. Find $f'''(x)$.

EXAMPLE: Given:
$$y = \left(\frac{x^3 - 2}{5x}\right) \left(\frac{x^2 + 5}{x^3}\right)$$
 find y' and y''.

EXAMPLE: Given: $y = 4x^3e^{-x}$ find y' and y".